Eden consumed a total of 9.75 quarts of sports drinks during both practices.
Eden brings a 0.75-quart bottle of sports drink to each softball practice. At her first practice, she drank 12 bottles of sports drinks. This means she drank a total of:
12 bottles x 0.75 quarts/bottle = 9 quarts
At her second practice, she drank the entire bottle, which is another 0.75 quarts.
Therefore, the total amount of sports drinks Eden consumed during both practices are:
9 quarts + 0.75 quarts = 9.75 quarts
Find out more about practices.
brainly.com/question/15734433
#SPJ4
a cereal comes in three different package sizes. what is the ratio of the cost of an 8-ounce box to a 16-ounce box of cereal? show your work on the sketchpad or explain in the text box.
As per the given scenario, a cereal comes in three different package sizes.
The ratio of the cost of an 8-ounce box to a 16-ounce box of cereal can be calculated as follows :Ratio of 8-ounce box to 16-ounce box= 8 : 16Here, the ratio of 8 and 16 can be simplified by dividing both the terms by [tex]8.8 : 16 = 1 : 2[/tex]
Therefore, the ratio of the cost of an 8-ounce box to a 16-ounce box of cereal is 1 : 2.
Note: The answer should be represented in the simplest form possible.
for such more questions on Ratios
https://brainly.com/question/12024093
#SPJ11
PLEASE HELP! 10 POINTS! URGENT!
Answer: 32
Step-by-step explanation:
Multiply by reciprocal. -> y >or= 32
32=32
24<32
16<32
8<32
according to financial experts, a renter should allow no more than 25% of their gross income for rent
true or false
What if FC
F-2,0,0,8,2,1
C12,0,3/2,1,-6,7
The vector FC is (14, 0, 3/2, -7, -8, 6).
If you are given two vectors FC and F and C, with F represented as F(-2, 0, 0, 8, 2, 1) and C represented as C(12, 0, 3/2,
1, -6, 7), you can find the vector FC by subtracting the F vector from the C vector component-wise.
Step 1: Write down the F and C vectors.
F = (-2, 0, 0, 8, 2, 1)
C = (12, 0, 3/2, 1, -6, 7)
Step 2: Subtract the F vector from the C vector component-wise.
FC = C - F
FC = (12 - (-2), 0 - 0, 3/2 - 0, 1 - 8, -6 - 2, 7 - 1)
Step 3: Simplify the subtraction.
FC = (14, 0, 3/2, -7, -8, 6)
So, the vector FC is (14, 0, 3/2, -7, -8, 6).
for such more question on vector
https://brainly.com/question/17157624
#SPJ11
An air traffic controller is tracking two planes. To start, Plane A is at an altitude of 2662 feet and Plane B is taking off. Plane A is gaining altitude at 25.25 feet per second and Plane B is gaining altitude at 85.75 feet per second. How many seconds will pass before the plane are at the same altitude? What will their altitude be when they’re at the same altitude?
Scott has been working out to get in shape. Each night, he does 3 bent-leg sit-ups for every 2 straight-leg sit-ups. If Scott does 10 straight-leg sit-ups every night, how many sit-ups does he do altogether?
Scott does 35 sit-ups altogether every night.
What is ratio?A ratio is a comparison of two quantities, expressed as the quotient of one quantity divided by the other. Ratios can be written in different forms, such as using a colon (:) or a fraction (/).
According to question:For every 2 straight-leg sit-ups, Scott does 3 bent-leg sit-ups. Therefore, the ratio of straight-leg sit-ups to bent-leg sit-ups is 2:3.
If Scott does 10 straight-leg sit-ups every night, we can use this ratio to find out how many bent-leg sit-ups he does.
First, we can write the ratio as a fraction:
2/5 = 10/x
where x is the number of bent-leg sit-ups Scott does.
To solve for x, we can cross-multiply:
2x = 50
x = 25
Therefore, Scott does 25 bent-leg sit-ups every night.
To find the total number of sit-ups Scott does every night, we can add the number of straight-leg sit-ups to the number of bent-leg sit-ups:
10 + 25 = 35
Therefore, Scott does 35 sit-ups altogether every night.
To know more about ratio visit:
https://brainly.com/question/13419413
#SPJ1
the grand canyon is 1600 meters deep at its deepest point. a rock is dropped from the rim above this point. express the height of the rock as a function of the time t in seconds. how long will it take the rock to hit the canyon floor? a(t)
The grand canyon is 1600 meters deep at its deepest point. a rock is dropped from the rim above this point. express the height of the rock as a function of the time t in seconds. It will take approximately 18.05 seconds for the rock to hit the canyon floor.
The height of a rock dropped from the rim of the Grand Canyon can be expressed as a function of time, t, in seconds. To do this, we will use the free-fall equation, which states that the height of an object in free fall is given by:
a(t) = -1/2 * g * t^2 + h
where:
- a(t) is the height of the rock at time t,
- g is the acceleration due to gravity (approximately 9.81 meters per second squared),
- t is the time in seconds, and
- h is the initial height of the rock (1600 meters, in this case).
For the rock dropped from the rim of the Grand Canyon, the function becomes:
a(t) = -1/2 * 9.81 * t^2 + 1600
To find how long it will take the rock to hit the canyon floor, we need to find the value of t when the height, a(t), is equal to 0 (i.e., the rock reaches the floor).
0 = -1/2 * 9.81 * t^2 + 1600
Now, we'll solve for t:
1/2 * 9.81 * t^2 = 1600
t^2 = (1600 * 2) / 9.81
t^2 ≈ 325.99
t ≈ √325.99
t ≈ 18.05 seconds
Therefore, it will take approximately 18.05 seconds for the rock to hit the canyon floor.
To know more about free-fall equation refer here:
https://brainly.com/question/30761165
#SPJ11
5c + 4c + 2 and 5c + 2[2c] + 1]
The final expression is 9c + 2.
What is an equation?
In mathematics, an equation asserts the equality of two expressions, usually separated by an equal sign (=). An equation is formed when two expressions are set equal to each other. The expressions can contain variables, constants, and mathematical operations such as addition, subtraction, multiplication, and division.
To simplify the expressions:
5c + 4c + 2 = 9c + 2
In this expression, we can add the coefficients of the like terms 5c and 4c to get 9c. Then we simply combine the constant term 2.
5c + 2[2c + 1] = 5c + 4c + 2
In this expression, we can distribute the 2 outside the brackets to get:
5c + 2(2c) + 2(1) = 5c + 4c + 2
Then, as in the previous expression, we can combine the like terms 5c and 4c to get 9c and simplify to get:
9c + 2
To learn more about equation, visit the link:
https://brainly.com/question/17145398
#SPJ1
0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,5,5
how many numbers are there
Answer:
There are 46 numbers in this sequence.
4 Assignment
K
Question 4, 2.4.20
Part 3 of 8
Fill in the Venn diagram with the appropriate numbers based on the following information.
n(A)=33
n(B)=36
n(B n C) = 14
n(An C) = 9
n(AnBn C) = 5
n(U)= 70
n(C) = 24
n(An B) = 17
A Venn diagram is a graphical representation of sets. Remember that n(A) is the number of
elements in set A.
Region I contains 12 elements.
Region Il contains 12 elements.
Region III contains elements.
I
=
II
HW Score: 73.15%, 6.58 of S
Points: 0 of 1
VII
VI
V
с
VIII
III
IV
B
U
Note that the sum of all the regions equals the size of the universal set U, as it should be:
5 + 12 + 4 + 24 + 19 + 9 + 5 + 6 = 70.
To fill in the Venn diagram, we start with the given information:
n(A) = 33
n(B) = 36
n (B ∩ C) = 14
n (A ∩ C) = 9
n (A ∩ B ∩ C) = 5
n(U) = 70
n(C) = 24
n (A ∩ B) = 17
We can use the formula for the size of a set union to find n (B ∪ C):
n (B ∪ C) = n(B) + n(C) - n (B ∩ C)
n (B ∪ C) = 36 + 24 - 14
n (B ∪ C) = 46
We can also use the formula for the size of a set intersection to find n(A ∩ B):
n (A ∩ B) = n(A) + n(B) - n (A ∪ B)
n (A ∪ B) = n(A) + n(B) - n (A ∩ B)
n (A ∪ B) = 33 + 36 - 17
n (A ∪ B) = 52
n (A ∩ B) = 33 + 36 - 52
n (A ∩ B) = 17
Now we can start filling in the Venn diagram:
I = A ∩ B ∩ C = 5
II = A ∩ B - C = 12 (since n(A ∩ B) = 17 and n(A ∩ B ∩ C) = 5)
III = A ∩ C - B = 4 (since n(A ∩ C) = 9 and n(A ∩ B ∩ C) = 5)
IV = A - B - C = 24 (since n(A) = 33 and n(A ∩ B) = 17 and n(A ∩ C) = 9 and n (A ∩ B ∩ C) = 5)
V = B - A - C = 19 (since n(B) = 36 and n(A ∩ B) = 17 and n(B ∩ C) = 14 and n (A ∩ B ∩ C) = 5)
VI = B ∩ C - A = 9 (since n(B ∩ C) = 14 and n(A ∩ B ∩ C) = 5)
VII = C - A - B = 5 (since n(C) = 24 and n(A ∩ C) = 9 and n(B ∩ C) = 14 and n (A ∩ B ∩ C) = 5)
VIII = U - (A ∪ B ∪ C) = 6 (since n(U) = 70 and n(A) = 33 and n(B) = 36 and n(C) = 24)
Therefore, the completed Venn diagram would have:
I = 5
II = 12
III = 4
IV = 24
V = 19
VI = 9
VII = 5
VIII = 6
Note that the sum of all the regions equals the size of the universal set U, as it should be:
5 + 12 + 4 + 24 + 19 + 9 + 5 + 6 = 70
To learn more about Venn diagram, visit
https://brainly.com/question/1605100
#SPJ1
A fourth grade class surveys students as to their shoe size.
Which type of graph would best display the results of this survey?
A. Circle graph
B. Histogram
C. Line plot
D. Blox plot
The best type of graph to display the results of this survey would be a histogram. A histogram is a graph that uses bars to represent the frequency distribution of a set of data. In this case, the shoe sizes would be grouped into intervals (e.g., 1-3, 4-6, 7-9, etc.) and the height of each bar would represent the number of students who have shoe sizes within that interval. A histogram is an effective way to show the overall pattern of the distribution of shoe sizes in the class.
A circle graph, also known as a pie chart, is useful for showing parts of a whole. It may not be the best choice for this survey since it does not show the distribution of shoe sizes as effectively as a histogram would.
A line plot, also known as a dot plot, is useful for showing the frequency of individual values in a small data set. It may not be the best choice for this survey since it may not be practical to list every individual shoe size.
A box plot, also known as a box-and-whisker plot, is useful for showing the distribution of a large data set. It may not be the best choice for this survey since the data set is likely to be small, and a histogram would be more appropriate for displaying the results.
The diameter of the circle above is 6cm what is the circumference of the circle?
Answer:
A
Step-by-step explanation:
r=d/2
=6/2 =3
2πr
2×3.14×3
=18.84
a ramp goes from a doorway of a building to the ground. the end of the ramp connected to the doorway is feet above the ground. the horizontal distance from the bottom of the ramp to the building is 15 feet. what is the angle of elevation of the ramp to the nearest degree?
The angle of elevation of the ramp to the nearest degree is 34°.
we can use trigonometry to determine the angle of elevation of the ramp.To begin, we need to draw a diagram to visualize the problem.
Let's assume that the height of the end of the ramp is h, and the horizontal distance from the bottom of the ramp to the building is d.
From the diagram, we can see that we have a right-angled triangle where the height of the triangle is h, the base of the triangle is d, and the hypotenuse of the triangle is the length of the ramp.
Using the tangent ratio, we can write:
tanθ = opposite/adjacent
where opposite is the height of the triangle, and adjacent is the base of the triangle. Substituting the values we have, we get:
tanθ = h/d
Rearranging this formula, we can write:
θ = tan⁻¹(h/d)
Substituting the values we have, we get:θ = tan⁻¹(10/15)θ = 33.69°
for more questions on angle of elevation
https://brainly.com/question/25748640
#SPJ11
I need help with the whole page please help!
The following points are 5 or more units apart: A and B, G and D, G and F, G and E, F and E, E and B, (4, 3 and (4, -2), (6, -2) and (0, -2), (3, -7) and (3, -1)
Identifying the points that are 5 or more units apartWhen two points on a graph are 5 or more units apart, it means that there is a significant difference in the values of the function at those points.
For example, if we have two vertical or horizontal points (x1, y1) and (x2, y2) on a graph such that |x1 - x2| ≥ 5, it means that the x-values of the two points are at least 5 units apart.
Similarly, if |y1 - y2| ≥ 5, it means that the y-values of the two points are at least 5 units apart.
Using the above as a guide, the following points are 5 or more units apart
A and B, G and D, G and F, G and E, F and E, E and B, (4, 3 and (4, -2), (6, -2) and (0, -2), (3, -7) and (3, -1)
The point that is 8 or more units apart from NWe have
N = (6, 8)
The point that is 8 or more units apart from N could be
Point = (6, 8 + at least 8)
So, we have
Point = (6, 8 + 9)
Point = (6, 17)
Hence, the point is (6, 17)
Read more about distance at
https://brainly.com/question/28551043
#SPJ1
What is the volume?
5 1/3in
3 3/4 in
4 in
Calc Prep question involving Cramer's Rule:
Using Cramer’s Rule, what is the value of x in the solution to the system of linear equations below?
2/5X + 1/4Y = 9/20
2/3X + 5/12 = 3/4
A )X = 0
B) X = 1
C) There are no solutions to the system.
D) There are infinite solutions to the system.
For the given linear equations, x = 63/4 i.e. None of the above options.
What is a linear equation, exactly?
Each term in a linear equation is either a constant or the product of a constant and a single variable raised to the first power. A linear equation in one variable has the general form: axe + b = 0, where a and b are constants and x is the variable. This equation's answer is a single value of x that solves the problem.
Now,
To use Cramer's Rule to solve this system of linear equations, we need to set up the following matrices:
A = 2/5 1/4
2/3 5/12
B = 9/20
3/4
The determinant of A is given by:
|A| = (2/5)(5/12) - (1/4)(2/3) = 1/30 - 1/18 = -1/90
The determinant of the matrix obtained by replacing the first column of A with B is given by:
|A1| = (9/20)(5/12) - (3/4)(2/3) = 9/80 - 1/4 = -7/40
The determinant of the matrix obtained by replacing the second column of A with B is given by:
|A2| = (2/5)(3/4) - (1/4)(9/20) = 3/10 - 9/80 = 3/40
Now, we can use Cramer's Rule to find the value of x:
x = |A1|/|A| = (-7/40)/(-1/90) = 63/4
Therefore, the value of x
x = 63/4
So the answer is not any of the given options.
To know about linear equations visit the link
brainly.com/question/29739212
#SPJ1
1 Write down: 1.1.1 The factors of 18
Answer:
1 2 3 6 9 and 18
Step-by-step explanation:
the 111 factors of 18 is 1 2 3 6 9 ang 18
perform a follow-up analysis of the test in exercise 38 by finding the individual compo- nents of the chi-square statistic. which cell(s) contrib- uted most to the final result and in what direction?
The cell that contributed most to the final result was Cell (1,2) with a contribution of 8.44.
How Cell (1,2) was contributed most to the final result?we need to calculate the expected frequencies for each cell in the contingency table. We can use the formula:
Expected frequency = (row total x column total) / grand total
The grand total for the table is 80, so we can calculate the expected frequencies for each cell as follows:
Expected frequency of Cell (1,1) = (44 x 42) / 80 = 23.1
Expected frequency of Cell (1,2) = (44 x 38) / 80 = 20.9
Expected frequency of Cell (2,1) = (36 x 42) / 80 = 18.9
Expected frequency of Cell (2,2) = (36 x 38) / 80 = 17.1
Next, we need to calculate the contribution of each cell to the chi-square statistic. We can do this by subtracting the expected frequency from the observed frequency, squaring the result, and then dividing by the expected frequency.
The contributions of each cell to the chi-square statistic are as follows:
Contribution of Cell (1,1) = (37 - 23.1)2 / 23.1 = 8.30
Contribution of Cell (1,2) = (7 - 20.9)2 / 20.9 = 8.44
Contribution of Cell (2,1) = (9 - 18.9)2 / 18.9 = 4.52
Contribution of Cell (2,2) = (27 - 17.1)2 / 17.1 = 6.04
Finally, we can sum up the contributions of all the cells to get the chi-square statistic:
Chi-square statistic = 8.30 + 8.44 + 4.52 + 6.04 = 27.30
The cell that contributed most to the final result was Cell (1,2) with a contribution of 8.44. This cell had an observed frequency of 7, which was much lower than the expected frequency of 20.9. This indicates that there is a significant association between the two variables in this cell, and it is driving the overall result of the test.
In conclusion, by breaking down the chi-square statistic into its individual components, we can identify the cells that contribute most to the result and gain a deeper understanding of the relationship between the variables.
Learn more about chi-square
brainly.com/question/14082240
#SPJ11
do eight-digit numbers with no digits 9 in their decimal representations constitute more than half of all eight-digit numbers?
Answer:
No.
Step-by-step explanation:
To determine whether eight-digit numbers with no digits 9 in their decimal representations constitute more than half of all eight-digit numbers, we need to calculate the total number of eight-digit numbers and the number of eight-digit numbers with no digit 9.There are 10 possible digits for each position in an eight-digit number, so there are 10^8 (or 100,000,000) total eight-digit numbers.
To count the number of eight-digit numbers with no digit 9, we can note that each digit in the number has 9 possible choices (0, 1, 2, 3, 4, 5, 6, 7, or 8), and since there are eight digits in the number, there are 9^8 (or 43,046,721) eight-digit numbers with no digit 9.Therefore, the proportion of eight-digit numbers with no digit 9 is:
9^8 / 10^8 = 0.43046721
This is less than half, so we can conclude that eight-digit numbers with no digits 9 in their decimal representations do not constitute more than half of all eight-digit numbers.
No, eight-digit numbers with no digit 9 in their decimal representations do not constitute more than half of all eight-digit numbers.
There are a total of 9 digits (0-9) in the decimal system, and an eight-digit number can have any of these digits in each of its eight places.
So, the total number of eight-digit numbers that can be formed is:
9 × 9 × 9 × 9 × 9 × 9 × 9 × 9 = 43,046,721
Out of these, there are 8 × 8 × 8 × 8 × 8 × 8 × 8 × 8 = 16,777,216 numbers that can have digits other than 9 in each of the eight places.
Therefore, the remaining numbers (43,046,721 - 16,777,216 = 26,269,505) will have at least one 9 in their decimal representations.
So, the eight-digit numbers with no digit 9 in their decimal representations constitute:16,777,216 / 43,046,721 = 0.3906 or approximately 39.06%of all eight-digit numbers. Therefore, they do not constitute more than half of all eight-digit numbers.
No, eight-digit numbers with no digit 9 in their decimal representations do not constitute more than half of all eight-digit numbers.
To learn more about the decimal system visit:
https://brainly.com/question/28222265?
#SPJ11
In an orchard, there are 12 apple trees, 24 orange trees, and a cherry tree. What is the ratio of orange trees to cherry trees?
Answer: 24:1
Step-by-step explanation:
In the first step, you have to acknowledge how many of each tree there are in the question asked.
There is one cherry tree and 24 orange trees.
So the ratio of orange trees to cherry trees would be 24:1
I have a question on this math problem, and I have to find the mean mode and range of the dot plot
With these steps, you can successfully find the mean, mode, and range of the data represented in the dot plot.
To find the mean, mode, and range of the dot plot, follow these steps:
Step 1: Count the total number of data points (dots) in the dot plot.
Step 2: Add up the values represented by the data points.
Step 3: Divide the sum from Step 2 by the total number of data points from Step 1 to calculate the mean.
Step 4: Identify the mode by finding the value(s) that appears most frequently in the dot plot (i.e., the value with the highest number of dots).
Step 5: Determine the range by finding the difference between the highest and lowest values in the dot plot.
For similar question on plot.
https://brainly.com/question/30408163
#SPJ11
what is the product of these binomials [tex](x-9)(x+2)=
The product of the binomials (x-9) and (x+2) is x² - 7x - 18.
How to calculate the product of these binomials?To find the product of the binomials (x-9) and (x+2), we can use the FOIL method, which stands for First, Outer, Inner, Last.
First: Multiply the first terms of each binomial: xx = x²
Outer: Multiply the outer terms of each binomial: x × 2 = 2x
Inner: Multiply the inner terms of each binomial: -9 × x = -9x
Last: Multiply the last terms of each binomial: -9 × 2 = -18
Now we can add up these four products to get the final answer:
x² + 2x - 9x - 18
Simplifying this expression, we get:
x² - 7x - 18
Therefore, the product of the binomials (x-9) and (x+2) is x² - 7x - 18.
To learn more about FOIL method, visit: https://brainly.com/question/2092062
#SPJ1
C is between A and D , and B is the midpoint of AC . If BC=2 and BD=7 , find AD
Answer:
AD = 9
Step-by-step explanation:
B is the midpoint of AC and BC = 2 so AC = 4.
BD is given as 7 so all we need to do is add up the given values:
AC + BD - BC = AD
4 + 7 - 2 = 9
the physician order vancomycin 400 mg oral every 6 hours for a child that weighs 99 lbs. the vancomycin is available in 250mg/ml concentration. the recommended dose is 40mg/kg/24 h divided in four doses. how many milligrams per kilogram per 24 hours is the patient receiving?
The patient is recieving nearly 35.5 miligrams of the drugs for per kilogram per 24 hours.
First, we need to convert the child's weight from pounds to kilograms:
99 lbs / 2.205 = 44.9 kg
Next, we calculate the recommended dose for this weight:
40 mg/kg/24h x 44.9 kg = 1796 mg/24h
Since the recommended dose is divided into four equal doses, each dose should be:
1796 mg/24h ÷ 4 doses = 449 mg/dose
However, the physician ordered 400 mg every 6 hours, which is not the same as 449 mg every 6 hours. To calculate the actual dose per kilogram per 24 hours, we need to convert the ordered dose to the recommended dose:
400 mg/dose x 4 doses = 1600 mg/24h
Then, we divide the actual dose by the child's weight in kilograms:
1600 mg/24h ÷ 44.9 kg = 35.6 mg/kg/24h
Therefore, the patient is receiving 35.6 mg/kg/24h, which is slightly lower than the recommended dose of 40 mg/kg/24h.
Learn more about Medical Dosage :
https://brainly.com/question/29061717
#SPJ4
Write a counterexample to prove this is false:
Yes, The function with a frequency of 2 has a greater period than a function with a frequency of 1/2.
What does the word" function" signify in calculation?
As a set of inputs with one for each, a function is defined as a relationship between them. A function, expressed simply, is an association between inputs where each input is connected to one and only one affair. A sphere, codomain, or range exists for every function. generally, f( x), where x is the input, is used to represent a function.
frequency of f(x) = 1/period of f(X)
2 = 1/[tex]T_{f}[/tex]
[tex]T_{g}[/tex] = 1/2
frequency of g(X) = 1/period of g(X)
1/2 = 1/[tex]T_{g}[/tex]
[tex]T_{f}[/tex] = 2
Learn more about function
brainly.com/question/28193995
#SPJ1
Write an exponential function
y = abx
for a graph that passes through
(2, 1)
and
(3, 4).
An exponential function y = abx for a graph that passes through (2, 1) and (3, 4) is [tex]y = (1/16)(4)^x[/tex].
To write an exponential function in the form[tex]y = ab^x[/tex] that passes through the points (2, 1) and (3, 4), follow these steps:
Step 1: Write the general form of the exponential function:
[tex]y = ab^x[/tex]
Step 2: Plug in the coordinates of the first point (2, 1):
[tex]1 = ab^2[/tex]
Step 3: Plug in the coordinates of the second point (3, 4):
[tex]4 = ab^3[/tex]
Step 4: Solve for "a" and "b" using the equations from Steps 2 and 3.
We have two equations:
1)[tex]1 = ab^2[/tex]
2) [tex]4 = ab^3[/tex]
Divide equation 2 by equation 1 to eliminate "a":
[tex](4/1) = (ab^3)/(ab^2)[/tex]
4 = b.
Now that we have found "b," we can find "a" by plugging "b" back into either equation 1 or 2.
We'll use equation 1:
[tex]1 = a(4)^21 = a(16)[/tex]
a = 1/16
Step 5: Write the final exponential function using the values of "a" and "b":
[tex]y = (1/16)(4)^x[/tex].
For similar question on exponential.
https://brainly.com/question/11464095
#SPJ11
The areas of two circles are 92 2 and 62 2
respectively. Find the radius of the circle
having its area equal to the sum of the areas of the two circles.
Answer:
formula for area of a circle = πr²
πr² = 92cm² first circle
πr² = 62cm² second circle
now to find the radius of a circle having the sum of the other circle.
πr² = 92 + 62
3.142 × r² = 154
r² = 154/3.142
r² = 49.013
take square root of both sides
r = √49.013
r = 7.000cm ≈ 7cm
Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used
The tiles to the correct boxes to complete the pairs-
A: [tex](-3^{-2} )^{0}[/tex] = 1; B: [tex]3^{3}.3^{1}. 3^{2} .3^{-12}[/tex] [tex]= 1/729[/tex] C: [tex]-3^{5} / -3^{8}[/tex] = -1/27 ; D: [tex]-3^{-3}. 3^{-3}[/tex] = - 1/729.
Explain about the indices:We can determine how many times a phrase has been multiplied by itself using an index, which is a tiny number.
Indexes is the plural of index.
Remember that a power is the result of a particular number of identical factors? For instance, the number [tex]3^{7}[/tex] is a power, where the base is the number 3, and the index or exponent is the number 7.
Given number with exponents :
A: [tex](-3^{-2} )^{0}[/tex]
[tex]= (-3^{0} )\\= 1[/tex]
B: [tex]3^{3}.3^{1}. 3^{2} .3^{-12}[/tex]
[tex]= 3^{3 + 1 + 2 -12}[/tex]
[tex]= 3^{-6}\\= 1/729[/tex]
C: [tex]-3^{5} / -3^{8}[/tex]
[tex]= -3^{5-8}\\= - 3^{-3}\\\= -1/27[/tex]
D: [tex]-3^{-3}. 3^{-3}[/tex]
[tex]= -3^{-3 - 3}\\= -3^{-6}\\\\= -1/729[/tex]
Know more about the indices
https://brainly.com/question/10339517
#SPJ1
jane is 3 times as old as kate. in 5 years jane's age will be 2 less than twice kate's. how old are the girls now
Answer:
Kate is 3 years old, Jane is 9 years old
Step-by-step explanation:
1.) First, assign variables to all of their ages. If we say Kate's age is x, Jane's age is 3 times this, which can be written as j, is 3x.
2.) Jane's age is also 2 less than twice of Kate's in 5 years. This means that her age is also 2(x+5) - 2 = j + 5. With a little simplification, you get that 2x + 8 = j + 5.
3.) Since j, Jane's age, is also 3x, we can substitute 3x in for j in the second equation. If you do this, you get 2x + 8 = 3x + 5.
4.) By moving the x onto one side and the numbers onto another, you get x = 3. X was Kate's age, meaning that Kate is 3 years old.
5.) Finally, since Jane's age is 3 times Kate's age, Jane's age is 3 * 3, which is 9. Jane is 9 years old.
Jane is 9 years old and Kate is 3 years old.To solve the problem, let's first establish variables for Jane and Kate's ages.
Let J represent Jane's age and K represent Kate's age.
According to the student question, Jane is 3 times as old as Kate, which can be represented as:
J = 3K
In 5 years, Jane's age will be 2 less than twice Kate's age, which can be represented as:
J + 5 = 2(K + 5) - 2
Now we can solve the equations step by step:
Substitute the first equation into the second equation to eliminate one of the variables:
3K + 5 = 2(K + 5) - 2
Distribute the 2 on the right side of the equation:
3K + 5 = 2K + 10 - 2
Simplify the equation by combining like terms:
3K + 5 = 2K + 8
Move the 2K term to the left side of the equation:
K = 3
now we know that Kate is currently 3 years old.
Substitute K's value back into the first equation to find Jane's age:
J = 3K
J = 3(3)
Simplify to find Jane's age:
J = 9
So, Jane is currently 9 years old.
Jane is 9 years old and Kate is 3 years old.
for more questions on variables
https://brainly.com/question/9302141
#SPJ11
l(x-1)(x-3)l=mx If m has four different possibilities, what is the range of m
Answer:
0 < m < 4-√12 ≈ 0.535898
Step-by-step explanation:
You want to know the range of values of m that will give |(x-1)(x-3)| = mx four distinct solutions.
Absolute valueThe quadratic function f(x) = (x -1)(x -3) will be negative for values of x between the zeros: 1 < x < 3. Hence the absolute value function will invert the graph in that interval, as shown by the red curve in the attachment.
The line y = mx can only intersect that graph in 4 places in the first quadrant. The value of m must be greater than 0 and less than 1.
Upper limitThe upper limit of the slope will be defined by the value of m that makes the line intersect the inverted quadratic exactly once. That is, the discriminant of mx -(-f(x)) = 0 will be zero.
mx +(x -1)(x -3) = x² +(m -4)x +3 = 0
D = (m -4)² -4(1)(3) = (m -4)² -12 = 0
Solving for m gives ...
(m -4)² = 12
m -4 = ±√12
m = 4 ±√12 ≈ 0.54 or 7.46
We can see from the attached graph that m ≈ 7.46 is an extraneous solution. This means the range of m will be ...
0 < m < 4-√12