an example of a native perennial species with a daisy-like flower that makes a good cut flower is:

Answers

Answer 1

An example of a native perennial species with a daisy-like flower that makes a good cut flower is the Black-eyed Susan.

Perennials are flowering plants that live for more than two years. These plants' lifespan varies from plant to plant, and they may blossom once a year or several times throughout the year. Their lifespan is generally shorter than that of trees and shrubs; nonetheless, they are a crucial addition to any landscape.

Perennial flowering plants can serve as backbones in a garden, as well as providing an array of stunning and colorful flowers throughout the year.The flowers of the Asteraceae family are characterized as daisy-like flowers. Daisies, sunflowers, and zinnias are all well-known members of the family.

All of these plants have a unique floral structure, with a central disk and ray petals. Ray petals extend outward from the disk and are generally yellow or white.The Black-eyed Susan is a member of the daisy family and is a native perennial species that is commonly grown in gardens.

They are a reliable plant that blooms from late summer to early fall and has yellow, daisy-like petals with dark brown centers. It is ideal as a cut flower since the blooms are long-lasting and provide an elegant splash of color. The Black-eyed Susan's natural habitats are meadows, fields, and prairies.

Learn more about native perennial species here:

brainly.com/question/29095883

#SPJ11


Related Questions

4. how might genetic drift and inbreeding be important processes in the conservation of endangered species?

Answers

Genetic drift and inbreeding are both important processes in the conservation of endangered species as they produce distinct organisms that might have survival traits.

Genetic drift occurs when the gene frequencies of a population shift due to random events, such as when a small subset of the population is isolated. This can cause the population to become genetically distinct from the original population. Inbreeding is the process of mating related individuals, which can result in the concentration of rare alleles or the production of offspring with reduced fertility or survival rates.

Both processes can help to preserve rare genes in a species and reduce the effects of genetic drift.

In the case of endangered species, conservationists can take advantage of these processes to protect rare alleles from being lost due to genetic drift.

By pairing related individuals, conservationists can reduce the frequency of deleterious alleles, which could be harmful to the species' survival. Inbreeding can also help to preserve rare genes by allowing them to be passed down to future generations.

Genetic drift and inbreeding are important processes in the conservation of endangered species.

By taking advantage of these processes, conservationists can help to preserve rare alleles and reduce the effects of genetic drift. This, in turn, can help to ensure the long-term survival of the species.

To learn more about endangered, click here:

https://brainly.com/question/10415903

#SPJ11

what unique ablilities did hela have that allowed it to contaminate cultures wihtout reseachers being aware that contamination had occured

Answers

Hela cells, originally derived from the cervical cancer of Henrietta Lacks, were found to have a unique ability to rapidly replicate and spread throughout cultures without researchers being aware. This phenomenon, known as “cross-contamination,” occurs when the same cell line is present in more than one culture, often without being noticed. This phenomenon is attributed to the ability of the Hela cells to rapidly divide and spread to other cultures, while maintaining their original characteristics.

Due to their rapid replication and spreading ability, Hela cells have been used as a tool to test various treatments, allowing researchers to assess the effects of a particular treatment on the same cell type without having to start from scratch. The cells are also used to study the mechanisms of cancer formation, and to evaluate the efficacy of vaccines and other treatments for cancer.

Hela cells have also been used in other areas, such as tissue engineering, stem cell therapy, and gene therapy. As a result, Hela cells have been instrumental in the advancement of medical research, allowing for a better understanding of disease, and the development of treatments for a wide range of diseases.

In summary, the unique abilities of Hela cells, such as their ability to rapidly replicate and spread throughout cultures, have allowed them to be used for many applications. These cells have enabled researchers to evaluate treatments and diseases, as well as advancing medical research in many other areas.

For more such questions on Hela cells.

https://brainly.com/question/13713145#

#SPJ11

what would the answer be ?

Answers

Races do not follow the traditional Mendelian laws. There are several reasons why the genetics of race may be complex and not follow simple Mendelian inheritance patterns.

What are the reasons why genetics of races is more complex?Multiple genes: Many traits that are associated with race are controlled by multiple genes, not just one. These genes can interact with each other in complex ways, making it difficult to predict the phenotype based on genotype.Environmental factors: Environmental factors can also play a role in the expression of traits. For example, exposure to different environmental toxins or nutrients can affect the expression of genes related to skin color.Population history: Populations are not static and can change over time due to factors such as migration and admixture. As a result, the genetic makeup of a population can be quite complex, and it may not be possible to neatly categorize individuals into discrete racial groups.Non-random mating: People tend to mate with others who are similar to them in terms of culture, religion, and ethnicity. This can lead to the formation of distinct subpopulations within larger racial groups, further complicating the genetics of race.

To find out more about genetics, visit:

https://brainly.com/question/30459739

#SPJ1

when jeremy smith was in the shower, the hot water ran out. the cold water caused the hairs on his skin to stand up. this body response to cold is known as . group of answer choices exfoliation anhidrosis piloerection perspiration

Answers

Jeremy Smith's body response when the cold water caused the hairs on his skin to stand up is known as piloerection.

Thus, the correct answer is piloerection (D).

Piloerection in humаns is аn аutonomic response observed during а vаriety of strong emotionаl experiences, including feаr аnd аnger, аesthetic pleаsure, аwe, аnd surprise.

Piloerection, also known as goosebumps or goose pimples, is the erection of the hаir of the skin due to contrаction of the tiny аrrectores pilorum muscles thаt elevаte the hаir follicles аbove the rest of the skin аnd move the hаir verticаlly, so the hаir seems to 'stаnd on end.'

For more information about piloerection refers to the link: https://brainly.com/question/28988562

#SPJ11

bilateral lesions of which brain structure would selectively disrupt circadian rhythms and thus sleep?

Answers

The suprachiasmatic nucleus (SCN) is the brain structure that is bilaterally damaged or injured, which selectively disrupts circadian rhythms and thus sleep.

What is a suprachiasmatic nucleus (SCN)?

The suprachiasmatic nucleus (SCN) is a small region of the brain that serves as the body's primary circadian pacemaker. It's a portion of the hypothalamus that is situated directly above the optic chiasm.

The suprachiasmatic nucleus (SCN) gets visual input from the retina via the retinohypothalamic pathway (RHT), which it employs to regulate circadian rhythms.

Circadian rhythm is a biological process that repeats approximately every 24 hours. It regulates physiological and behavioral cycles, such as the sleep-wake cycle. The circadian rhythm of an organism can be disrupted by a variety of factors, including genetic mutations, environmental influences, and illnesses such as Alzheimer's disease and Parkinson's disease.

Circadian rhythms are disrupted in patients with bilateral suprachiasmatic nucleus (SCN) damage. SCN damage is also linked to insomnia, excessive daytime sleepiness, and other sleep disorders. In addition, they may have difficulty adapting to shift work or jet lag. These symptoms can have a significant impact on a person's quality of life.


Learn more about suprachiasmatic nucleus (SCN) here:

https://brainly.com/question/31067021#


#SPJ11

hunting, fishing, and gathering material at rates that exceed the ability of populations to rebound is called and is a thread to biodiversity group of answer choices invasive species pollution overharvesting habitat loss climate change

Answers

Pollution is the result of hunting, fishing, and material collection at rates that are higher than the capacity of populations in biodiversity to recover it. Option 2 is Correct.

While habitat fragmentation is the division of habitat after correcting for habitat loss, habitat loss typically refers to the reduction in the geographical area of natural habitat, including forest, grassland, desert, and wetlands.

When an area's state deteriorates as a result of pollution, invading species, or excessive use of natural resources, that area is said to have been degraded. Examples include streams becoming damaged by runoff of sediments and pollutants from nearby farms and prairies being overrun by woody plants like eastern red cedar.

Learn more about biodiversity Visit: brainly.com/question/11542363

#SPJ4

Correct Question:

Hunting, fishing, and gathering material at rates that exceed the ability of populations to rebound is called and is a thread to biodiversity group of answer choices

1. invasive species

2. pollution

3. overharvesting habitat

4. loss climate change.

1. which of these is not a component of the middle ear? a. tympanic membrane b. eustachian (auditory) tube c. malleus, incus, stapes d. nasopharynx e. tympanic cavity

Answers

The correct answer is option d) nasopharynx.

The middle ear has four components: the tympanic membrane, the eustachian tube, the malleus, the incus, the stapes, and the tympanic cavity. Among these, the nasopharynx is not a component of the middle ear.

The nasopharynx is located in the upper part of the throat, behind the nose, and above the oropharynx and laryngopharynx. It connects the nose and the mouth to the rest of the throat and the lungs.

The eustachian tube is a narrow tube that connects the middle ear to the nasopharynx.

The malleus, incus, and stapes are three small bones that are found in the middle ear.

The tympanic membrane, also known as the eardrum, is a thin, semi-transparent layer of tissue that separates the outer ear from the middle ear. The tympanic cavity is a small, air-filled space that is located within the middle ear, behind the eardrum. This cavity is connected to the nasal cavity by the eustachian tube.

The middle ear is responsible for transmitting sound from the outer ear to the inner ear. The malleus, incus, and stapes are involved in this process, while the eustachian tube is responsible for regulating the pressure within the middle ear.

The nasopharynx contains the auditory tube, which is responsible for draining secretions away from the middle ear. However, it is not considered a component of the middle ear.

In conclusion, the nasopharynx is not a component of the middle ear.

To know more about the nasopharynx, refer here:

https://brainly.com/question/30510138#

#SPJ4

true or false? a definitive host is an animal host in which an immature parasite develops but does not reach sexual maturity.

Answers

The given statement "A definitive host is an animal host in which an immature parasite develops and reaches sexual maturity" is true because a definitive host is a host that harbors the adult, sexually mature, phase of the parasite's life cycle.

Definitive hosts are the final host in which a parasite reaches maturity and undergoes sexual reproduction. A definitive host is a host that harbors the adult, sexually mature, phase of the parasite's life cycle. The life cycle of a parasite is incomplete unless it goes through its adult or sexual phase in the definitive host.

A definitive host is usually the host in which the parasite reproduces asexually, and it is the only host that can transmit the infection to other hosts. For example, the human host is the definitive host for the protozoan parasites of Plasmodium vivax and Plasmodium falciparum, which are the causative agents of malaria.

Learn more about definitive host here:

brainly.com/question/14293887

#SPJ11

albinism is a condition in which pigmentation is lacking. in humans, the result is white hair, nonpigmented skin, and (usually) blue eyes. the trait in humans is caused by recessive alleles. two normal parents have an albino child. what is the probability that their next child will be albino? explain your reasoning.

Answers

If two normal parents have an albino child,  the probability that their next child will be albino is 25%.

If two normal parents have an albino child, this indicates that both parents are carriers of the recessive allele for albinism. In this case, each parent would have one normal allele and one recessive allele for the trait.

The probability that their next child will be albino depends on the genotype of each parent. If both parents are carriers of the recessive allele, then each has a 25% chance of passing on the recessive allele to their offspring, and a 75% chance of passing on a normal allele.

Using a Punnett square to illustrate this, we can see that each parent would have the genotype Aa (where A represents the normal allele and a represents the recessive allele). The Punnett square for a cross between two Aa individuals is shown below:

           A           a

A      AA         Aa

a       Aa         aa

From this Punnett square, we can see that there is a 25% chance (1 out of 4) that the next child of these parents will inherit two copies of the recessive allele (aa) and thus have albinism.

There is also a 50% chance (2 out of 4) that the child will be a carrier like the parents (Aa), and a 25% chance (1 out of 4) that the child will inherit two copies of the normal allele (AA) and will not have albinism.

Therefore, the probability that their next child will be albino is 25%.

Learn more about albinism here:

https://brainly.com/question/14892783

#SPJ11

Substrate
x
Active Site
x
5.
Substrate entering
active site of enzyme
Enzyme/substrate
complex
Enzyme/prouducts
complex
You are studying enzymes in biology class. Hydrogen peroxide (H₂O₂) is produced as a byproduct of respiration. Hydrogen peroxide is harmful to cells and must be continually broken down.
Catalase is an enzyme found in living cells that speeds up the breakdown of hydrogen peroxide into water and oxygen (2 H₂O₂- 2 H₂O + O₂). You are working with your lab group to investigate
what factors influence the rate of the peroxide reaction. Your lab group is provided with liver samples as a source of catalase, as well as 3% hydrogen peroxide.
You have learned in class that changing the pH or temperature of the environment can denature an enzyme. When an enzyme is denatured, it's shape changes, preventing it from forming an
enzyme-substrate complex and slowing the reaction or even causing it to stop. Your group is curious about what might denature catalase. What would be the most appropriate hypothesis to use if
you wanted to test conditions that could denature catalase?
4x A If the concentration of hydrogen peroxide is decreased, then the reaction rate will decrease.
B If the liver is placed in an acidic solution, then the reaction rate will decrease.
C If the hydrogen peroxide is warmed, then the rate of the reaction will increase.
Products
D If the amount of liver is increased, then the reaction rate will increase.
Products leaving
active site of
enzyme

Answers

The most appropriate hypothesis to

use if you wanted to test conditions that could denature catalase is If the liver is placed in an acidic solution, then the reaction rate will decrease. The correct option to this question is B.

Effect of pH on enzyme The form of the enzyme changes at very acidic and alkaline pH levels, rendering it incompatible with its particular substrate. Denaturation is the term for this impact, which may be long-lasting and irreversible.Only at a particular amount of acidity can most enzymes function. To keep the pH at the ideal level for enzyme activity, cells produce acids and bases. Acids and bases operate in your digestive tract during food digestion. Take the stomach enzyme pepsin into consideration, which aids in the breakdown of proteins.

For more information on enzyme activity kindly visit to

https://brainly.com/question/13825485

#SPJ1

one of your classmates states that a melon is a fruit because it has a sweet taste. how should you respond?

Answers

If one of your classmates states that a melon is a fruit because it has a sweet taste, you should explain to them that the botanical definition of a fruit is based on whether it contains seeds or not. Therefore, melons are actually classified as fruits.

Botanical classification of melon

A melon is a fruit that belongs to the cucurbitaceae family, which includes a variety of other fruits and vegetables. The botanical classification of melon is based on the presence of seeds. Fruits contain seeds, while vegetables do not. Melons have a fleshy outer layer and a seed-containing inner layer, which classifies them as fruits. They may also be classified as berries because of the way their seeds are organized within the fruit.

See more about melon in:

https://brainly.com/question/26987904

#SPJ11

true or false?: the rate of osmosis increases with increasing differences in solute concentrations between two solutions separated by a selectively permeable membrane.

Answers

The rate of osmosis increases with increasing differences in solute concentrations between two solutions separated by a selectively permeable membrane is a true statement.

What is osmosis?

Osmosis is the diffusion of water across a selectively permeable membrane from an area of lower solute concentration to an area of higher solute concentration until equilibrium is established.

Water molecules diffuse through the membrane in both directions in response to concentration gradients, but there is a net movement of water towards the higher solute concentration until the two sides are isotonic.

A selectively permeable membrane is a barrier that allows some particles to pass through while excluding others. The membrane is permeable to water but not to the solute molecules or ions that are dissolved in the water. As a result, osmosis only occurs when there is a difference in solute concentration across the membrane.

To know more about selectively permeable membrane

https://brainly.com/question/11635962

#SPJ11

explain why both mitosis and differentation are necessary processes for regenerating the leg of the salamander . be sure to reference the figures and provide details about parent cells daughter cells, DNA, and gene expression

Answers

The bones, muscles, nerves, and blood arteries in salamanders' limbs can regenerate entirely. Both mitosis and differentiation are necessary for salamander limb regeneration.

Why is it crucial that each daughter cell have the same data as the parent cell?

Because the daughter cells will perform the same functional tasks as the parent cells, it is crucial that they share the same genetic makeup as the parent cells. Without the proper genetic make-up, the cell might not be able to live or even function properly.

What part does mitosis play in animal healing and regeneration?

Mitosis produces brand-new cells that are genetically identical to one another. Mitosis aids in organism growth and repair.

To know more about bones visit:-

brainly.com/question/5482443

#SPJ1

the complex interactions between trees, owls, fungi, and other organisms in an old-growth forest is a .

Answers

The complex interactions between trees, owls, fungi, and other organisms in an old-growth forest is a dynamic ecological system.

An old-growth forest is a naturally occurring, undisturbed forest ecosystem, with trees and plants of various ages and sizes. This type of ecosystem is often characterized by a large number of tree species, as well as a diversity of birds, fungi, and mammals.

The interactions between trees, owls, fungi, and other organisms in an old-growth forest create an interdependent and symbiotic relationship.

For example, the trees provide a place for birds to nest and forage, while fungi break down the decaying material of the tree and provide nutrients to the surrounding plants and trees. The fungi also help the trees to better absorb water and nutrients, while providing a food source for birds.

In addition, owls feed on small mammals, insects, and other animals that make their home in the old-growth forest. These complex relationships help to maintain the stability of the forest's ecosystem, allowing the many organisms to coexist in balance.

The old-growth forest is an intricate, interconnected web of life that can be disrupted by human interference, such as logging and burning. Human activity can lead to a decrease in biodiversity, disruption of the delicate balance of the ecosystem, and eventually cause the old-growth forest to disappear.

It is important to protect old-growth forests in order to maintain the dynamic and complex interactions between trees, owls, fungi, and other organisms, and to ensure the sustainability of this precious natural resource and maintain a dynamic ecological system.

To know more about an old-growth forest, refer here:

https://brainly.com/question/412092#

#SPJ11

which type of cell is located within the epidermis and produces melanin? multiple choice question. melanophil neutrophil melanocyte osteoblast

Answers

The cell that is located within the epidermis and produces melanin is melanocyte.

What is melanocyte?

A melanocyte is a pigment-forming cell located in the bottom layer of the epidermis. The melanocytes are located in the stratum basale of the epidermis.

They generate melanin, which is a brown pigment that protects the skin from the sun's ultraviolet rays. Melanocytes in human skin have long, branching dendrites that connect to keratinocytes.

These dendrites emit melanosomes, which contain melanin, into the keratinocytes. Melanosomes remain in the keratinocytes as the cells move to the skin's surface, protecting the skin from ultraviolet rays. Melanocytes' branching dendrites can generate melanin for several keratinocytes.

What is the function of melanocyte?

Melanocytes are responsible for producing the pigment that gives skin its color. The number of melanocytes in the skin and the amount of melanin they produce determine a person's skin color. Melanin also helps to protect the skin from the sun's ultraviolet rays.

Learn more about Melanocytes here:

https://brainly.com/question/9137370#


#SPJ11

a mutation in a single gene may cause a major change in the body of a fruit fly, such as an extra pair of legs or wings. yet it probably takes the combined action of hundreds or thousands of genes to produce a wing or leg. how can a change in just one gene cause such a big change in the body? bolditalicunderline

Answers

A change in a single gene can trigger a chain reaction of genetic events that result in significant alterations that can result in an extra pair of legs or wings in the body of a fruit fly.

A mutation in a single gene may cause a major change. However, it may take the combined action of hundreds or thousands of genes to create a wing or leg. A mutation in a specific gene can cause cascading impacts that activate or deactivate various genes in a pathway or network, resulting in significant modifications to a body part or behavior. For example, the wingless gene in fruit flies can cause the absence of wings. The fruit flies with the wingless gene mutation may lack some of the gene products required for wing formation or fail to produce any wings at all. Another gene, the Distal-less gene, is responsible for creating the proper limb structure for legs and wings. When the Distal-less gene is mutated, it can cause problems in limb formation that result in additional limb formation, such as extra legs or wings. A single gene mutation can cause significant changes in body parts if it is part of a series of genes involved in a particular process. The role of each gene in the development of an organism's morphology and function is also regulated by its placement in a network or pathway of genes. Mutations can trigger a chain reaction of genetic events that result in significant alterations. The amount of impact on a body part or behavior of a mutation is determined by the gene's place in the network and the strength and complexity of its interactions.

Learn more about mutation: https://brainly.com/question/14438201

#SPJ11

which of the following lists the steps of fracture repair in the correct sequence? hematoma, granulation tissue, callus granulation tissue, hematoma, callus hematoma, callus, granulation tissue callus, hematoma, granulation tissue

Answers

The following list represents the proper sequence of fracture repair: hematoma, callus, granulation tissue.

The sequence of fracture repair is explained below:

Hematoma: A blood clot forms when a bone is broken. When a bone is broken, blood vessels inside the bone and surrounding tissues are damaged, causing bleeding. The accumulation of blood at the fracture site causes a hematoma. The bleeding must be stopped before the bone may begin to heal.

Callus: Osteoblasts migrate to the fracture site after the hematoma has been absorbed. Osteoblasts begin to produce new bone cells, which are called a callus, at the fracture site. The callus is a collagen-rich matrix that surrounds the bone and is composed of minerals such as calcium and phosphorus.

Granulation tissue: The callus is replaced by granulation tissue once the osteoblasts have completed their work. It contains a rich blood supply and is the site of the formation of the new bone. When the bone has healed entirely, the granulation tissue is replaced by bone tissue.

For more such questions on fracture, click on:

https://brainly.com/question/19700972

#SPJ11

if two brain cells become more active at the same time, the connections between them grow stronger. this process is called

Answers

This process is called synaptic plasticity. Synaptic plasticity is the ability of two neurons to form a stronger connection when they become active at the same time. This process is important for learning, memory formation, and other cognitive processes.

If two brain cells become more active at the same time, the connections between them grow stronger. This process is called Hebbian Learning.The learning process that occurs when the firing of one neuron strengthens the synapse that leads to a neighboring neuron is known as Hebbian learning. It is named after Canadian psychologist Donald Hebb, who first proposed the concept in 1949.

This theory is based on the idea that the two neurons that fire together become connected, and the synaptic link between them grows stronger when they do. Hebbian learning has been related to a variety of learning processes in the brain, including the development of perceptual maps in the visual cortex, the refinement of motor control, and the learning of higher-order cognitive abilities. It is thought to underlie most types of memory and plays a critical role in neural development, memory formation, and learning.

To know more about synaptic plasticity please visit :

https://brainly.com/question/24213664

#SPJ11

Put an (A) next to examples of absolute dates and an (R) next to examples of relative dates

1) A house built in 1805
2)The oldest tomb in the valley of the kings
3)Charred wood from the greatest Chicago fire
4) pyramid with the most recent form of Mayan writing on the wall
5)Bronze Age axe head from England
6)Barn before the one currently standing

Answers

Answer:

A

R

A

R

A

R

If you found this response helpful, please consider marking it as brainliest.

fred had chicken pox as a child. which of his cells confer immunological memory to the chicken pox virus?

Answers

Answer:A lymphocyte (B or T cell) that retains a “memory” of a specific pathogen after an infection is over and thus provides immunity to the pathogen.

Explanation:

all of the following are good food sources of iron except: multiple choice question. whole grains nuts legumes liver

Answers

Except for liver, all of the following foods are rich sources of iron. Lean meat and shellfish are the best dietary sources of heme iron. Option 4 is Correct.

The highest sources of heme iron include meat, poultry, and shellfish. Non-heme iron can be found in fortified grains, nuts, seeds, legumes, and vegetables. Several breads, cereals, and baby formulae in the US are iron-fortified. Food.

Nuts, legumes, vegetables, and fortified grain products are dietary sources of nonheme iron. Pistachios have the highest iron of any common nut kind, with 14mg per 100g, or roughly 4 times the amount of almonds, Brazil nuts, or cashews. Pistachios are the ideal healthy snack since they are also a wonderful source of protein, vitamin E, calcium, and magnesium.

Learn more about liver Visit: brainly.com/question/16342711

#SPJ4

Correct Question:

All of the following are good food sources of iron except: multiple choice question.

1. whole grains

2. nuts

3. legumes

4. liver.

the location of the sun on the first day of spring is the*blank*

Answers

Answer:  Northern Hemisphere

Explanation:  The March equinox heralds the arrival of spring in the Northern Hemisphere and autumn in the Southern Hemisphere . On this day, the sun rises due east and sets due west.

In the Southern Hemisphere the equinox occurs on September 22 or 23, when the Sun moves south across the celestial equator. According to the astronomical definition of the seasons, the vernal equinox also marks the beginning of spring, which lasts until the summer solstice (June 20 or 21) in the Northern Hemisphere

Hope this helps :)

Carlos calculated the biomass of each trophic level in an ecosystem. The values he calculated were: 5, 689 12,561 999 9 m² 292, 635 9 m2 What is the average biomass of the apex predators in this ecosystem?
O 999 9 m²
O 292, 635
O 12,561 9 m² 9 m² 9 m²
O 5,689 2 2 m²​

Answers

Based on the values provided, the apex predators have a biomass of 5,689 9 m².

What is ecosystem?

An ecosystem is a complex community of living organisms and their non-living environment, in which they interact with each other and with the physical and chemical factors of their surroundings. It includes all living things, such as plants, animals, microorganisms, and their physical surroundings, such as air, water, soil, sunlight, and nutrients. Ecosystems can range in size from small ponds to vast forests or oceans. They can be found in various environments, including terrestrial, freshwater, and marine environments.

Here,

To calculate the average biomass of the apex predators, we first need to identify which trophic level represents the apex predators in the ecosystem. The apex predators are usually at the top of the food chain and consume other predators, so we can assume that the highest value in the list corresponds to the apex predators.

To double-check, we can also calculate the average biomass of all the trophic levels and see if the highest value matches that average. The average biomass is calculated by adding up all the values and dividing by the total number of values:

(5,689 + 12,561 + 999 + 9 + 292,635 + 9) / 6 = 49,900.33 9 m²

As we can see, the highest value (292,635 9 m²) is significantly higher than the average biomass (49,900.33 9 m²). Therefore, we can conclude that the average biomass of the apex predators in this ecosystem is 292,635 9 m².

Therefore, the average biomass of the apex predators in this ecosystem is 5,689 9 m², which means that on average, each individual apex predator in this ecosystem has a biomass of 5,689 kilograms per 9 square meters.

To know more about ecosystem,

https://brainly.com/question/30376964

#SPJ1

graded potentials develop in the cell body of neurons as well as in the sensory receptor. in order for sensory information to reach the central nervous system, the graded potential must be converted into an action potential. how (explain the steps) is the graded potential created in the cell body?

Answers

The steps on how graded potential is created in the cell body of a neuron are: Stimulus, Action potential, Graded potentials,  Summation, Axon.

Graded potentials develop in the cell body of neurons as well as in the sensory receptor. To get the sensory information to the central nervous system, the graded potential should be converted into an action potential. The steps on how graded potential is created in the cell body of a neuron are:

1. Stimulus: A sensory receptor is activated by a stimulus. The stimulus can be heat, light, touch, or sound.

2. Action potential: The sensory receptor sends an action potential, which is an electrical signal, down the neuron.

3. Graded potentials: Graded potentials then develop in the cell body of the neuron. Graded potentials are small electrical signals that change the neuron's membrane potential.

4. Summation: The graded potentials' summation causes the membrane potential of the neuron to change enough to generate an action potential.

5. Axon: The action potential is sent down the axon to the synapse. The graded potential is generated due to the movement of positively charged ions, usually sodium, into the cell or negatively charged ions, like chloride, outside of the cell. The influx of ions into the cell causes depolarization of the cell, which leads to the development of a graded potential.

Hence, The steps on how graded potential is created in the cell body of a neuron are: Stimulus, Action potential, Graded potentials,  Summation, Axon.

To know more about cell body of a neuron, refer here:

https://brainly.com/question/21803782#

#SPJ11

Choose the correct statement(s) regarding the changes that take place in bones as a person ages. Check all that apply.
a. Adults have fewer bones because many bones fuse through the years.
b. At birth there are about 270 bones, but fewer bones form during childhood
c. The adult pelvis is a single hip bone, which results from the fusion of three childhood bones.
d. The fusion of several bones, completed by late adolescence to the mid-20s, brings about the average adult number of 206.

Answers

The human body has roughly 270 bones at birth, but some of these bones fuse together as the child develops. As a result, adults have less bone mass than children.

Why do adults have less bones than children?

Because some bones combine to form one bone as children age, babies have more bones than adults do. Babies have more cartilage than bone, which explains this. Around 305 bones are present in newborns

What is necessary for normal bone formation in sufficient amounts?

The two main components of the crystalline component of bone, calcium and phosphate, are necessary for normal bone development and mineralization. Rickets and/or osteomalacia can be caused by insufficient mineralization.

To know more about bones visit:-

https://brainly.com/question/5482443

#SPJ1

damage to the anterior pituitary gland would affect the secretion of which hormone(s)? select all that apply.

Answers

Damage to the anterior pituitary gland would affect the secretion of growth hormone (GH), thyroid-stimulating hormone (TSH), adrenocorticotropic hormone (ACTH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH).

The anterior pituitary gland, also known as the adenohypophysis, is located at the base of the brain and secretes six hormones. These hormones are growth hormone (GH), thyroid-stimulating hormone (TSH), adrenocorticotropic hormone (ACTH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin. Each of these hormones is important for different processes in the body.

Growth hormone
(GH) is important for stimulating growth, thyroid-stimulating hormone (TSH) helps regulate the thyroid gland, adrenocorticotropic hormone (ACTH) helps regulate the adrenal glands, follicle-stimulating hormone (FSH) helps regulate fertility, luteinizing hormone (LH) helps regulate ovulation, and prolactin helps regulate lactation.

If the anterior pituitary gland is damaged, it can cause a disruption in the production of these hormones, resulting in a variety of health complications. Damage to the anterior pituitary gland would therefore affect the secretion of growth hormone (GH), thyroid-stimulating hormone (TSH), adrenocorticotropic hormone (ACTH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH).

To know more about pituitary gland click on below link:

https://brainly.com/question/12499901#

#SPJ11

the cftr protein is a single polypeptide of 1,500 amino acids. what is the approximate length of its mature mrna?

Answers

The approximate length of the mature mRNA of the CFTR protein, which is a single polypeptide of 1,500 amino acids is around 4,500 nucleotides.

CFTR stands for the cystic fibrosis transmembrane conductance regulator. This gene codes for a protein that is involved in the regulation of salt and water levels in the body's cells. The CFTR protein is responsible for regulating the flow of salt and water across cell membranes. The CFTR protein spans the cell membrane and consists of five domains.

The length of an mRNA is determined by the number of nucleotides that make up the coding region of the mRNA, and the length of the coding region is determined by the number of amino acids in the protein it codes for. Each amino acid is coded for by three nucleotides in the mRNA. Thus, the length of the mRNA required to code for a protein of 1,500 amino acids would be around 4,500 nucleotides (1,500 x 3).

Learn more about CFTR protein at https://brainly.com/question/13203767

#SPJ11

sharp, localized (fast) pain is rapidly transmitted to the central nervous system along a) large, unmyelinated c fibers. b) small, myelinated a-delta fibers. c) small, unmyelinated c fibers. d) large, myelinated a-beta fibers.

Answers

Sharp, localized (fast) pain is rapidly transmitted to the central nervous system along is c) small, unmyelinated c fibers.

Small unmyelinated c fibers transmit sharp, localized (fast) pain rapidly to the central nervous system because they are unmyelinated and thus do not require a great amount of time for the nerve impulse to travel down them.

To explain further, unmyelinated C fibers are the smallest in diameter and lack the insulating myelin sheath, making them the fastest type of fiber for transmission of a nerve impulse.  They are activated by painful stimuli and responsible for conveying this information quickly to the CNS.

Learn more about nervous system at:

https://brainly.com/question/13487019

#SPJ11

heat stresses coral communities and can lead to coral bleaching. what is the impact of long-term coral bleaching on a coral reef?

Answers

Heat stresses coral communities and can lead to coral bleaching. The impact of long-term coral bleaching on a coral reef is that it causes the death of coral and a decline in the biodiversity of the reef.

Coral bleaching refers to the process where coral colonies lose their color and turn white. Coral bleaching is caused by the expulsion of symbiotic algae from coral colonies. This loss of symbiotic algae results in the coral colonies losing their main source of food and energy, making them susceptible to disease and other environmental stressors such as rising sea temperatures. As a result, many coral colonies are killed. Coral bleaching has a significant impact on the biodiversity of a coral reef. It causes the death of coral colonies and a decline in the biodiversity of the reef. The reef's ecosystem depends on the coral colonies for food, shelter, and habitat. When the coral colonies die, the fish and other marine life that depend on them are also affected. As a result, there is a decline in the number of species on the reef. The loss of biodiversity makes the reef less resilient to other environmental stressors such as pollution and disease. Additionally, coral reefs are essential for protecting shorelines from storms and erosion. If the reefs are degraded due to long-term coral bleaching, the shorelines become more vulnerable to these hazards. Therefore, long-term coral bleaching has a significant impact on the ecological and economic value of coral reefs.

Learn more about coral reef: https://brainly.com/question/10970167

#SPJ11

Which lipoprotein is responsible for transporting cholesterol from body cells to the liver?
a. HDL (high-density lipoprotein) cholesterol
b. Chylomicrons
c. Complex particles
d. LDL cholesterol

Answers

LDL cholesterol is responsible for transporting cholesterol from body cells to the liver. Cholesterol is an essential component of the human body's cell membrane, aiding in the formation of steroid hormones, bile acids, and vitamin D. However, high levels of cholesterol in the bloodstream can lead to cardiovascular disease.

A variety of lipoproteins transport cholesterol in the bloodstream, including very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL). When the liver creates VLDL, it is then converted into IDL, which is subsequently converted into LDL. LDL cholesterol is responsible for transporting cholesterol from body cells to the liver. The liver is responsible for absorbing LDL cholesterol and breaking it down, converting it into bile salts, or excreting it. When there is an excess of LDL cholesterol in the bloodstream, it can deposit on the walls of the arteries, causing them to narrow and harden, resulting in atherosclerosis. LDL cholesterol is often referred to as "bad" cholesterol since elevated levels are linked to an increased risk of cardiovascular disease. Maintaining a healthy diet, exercising, and not smoking are some of the ways to reduce LDL cholesterol levels. In summary, LDL cholesterol is responsible for transporting cholesterol from body cells to the liver. When there is an excess of LDL cholesterol in the bloodstream, it can lead to atherosclerosis, which raises the risk of cardiovascular disease.

for more such questions on  cholesterol .

https://brainly.com/question/841110

#SPJ11

Other Questions
since the 1970s, both violent and overall crime rates have gone down, while at the same time, incarceration rates in the united states have What is the ratio of ammonia if the chemical formula isNH3 Which comment is specific enough to be helpful for a poems writer 39 of the 52 students in choir A like musicals. 35 of the 44 students in choir b like musicals. Was there a higher percentage of students that like musicals in choir A or B? Find the resistance in a 1238 watt circuit with 120 volt electricity passing through it. the nurse is caring for a client with systemic lupus erythematosus (sle). which interventions will the nurse incorporate into this client's plan of care? select all that apply. when re-assessing the risk of xyz stock in relation to the market index, you find that the ratio of the systematic variance to the total variance has fallen. you must also find that the . Which describes the role of stimulants? the quantity demanded of oatmeal increased from 1,350 to 1,700 when the price of grits increased from $2.05 to $2.65. what is the estimated cross-price elasticity of demand for oatmeal? round your answer to the nearest hundredth. when randall collins looks at organizational power position, he finds that the difference between the working class and the middle class is found in the research approach in which the researcher does not actually collect original data but analyzes already existing data is called a) a psychobiography. b) a field experiment. c) archival research. d) statistical reporting. what type of network theory states that no matter how many nodes there may be in a network, a small percentage of randomly placed links is always enough to tie the network together into a more or less completely connected whole? Why do you think Dante was still hesitant to continue his journey from error tothe light of God, even though he had spiritual guides to protect him? the population of humans on earth increased gradulaly unitil the nineteen centery, after which it increased exponitally due to the abaiblity of better medicicne and food prodict describe the kind of growth curve that human population has followed a lightbulb radiates most strongly at a wavelngth of abou t3000 nanometers. how hot is its filament? Hormones are chemicals secreted and regulated by the endocrine system.truefalse does kinetic friction speed up or slow down an object? Therefore, which type of work iis done by kinetic friction? when using sample data to estimate a population-level relationship, why is it necessary to engage in hypothesis testing? simba runs into another biome protecting himself from the hyenas because they refuse to enter.which biome is it the idea that underlying personality traits are less important than immediate circumstances in determining behavior is known as: a. aggregation. b. situationism. c. acquiescence. d. social desirability.